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FORMULATION OF NORMALIZED NON-LINEAR FREE ELECTRON

LASER EQUATIONS

I. Introduction

Free electron lasers (FELs) show great potential for becoming a

new class of efficient devices capable of generating intense levels of

coherent radiation, continuously tunable from sub-millimeter to beyond

the optical regime. ('- " ) The FEL is characterized by a wiggler (pump)

field, for example a spatially periodic magnetic field, which scatters

off a relativistic electron beam.

In this paper we present an extension of the formulation of the

1-D non-linear self-consistent FEL equations in the steady state amplifying

configuration with space charge effect for a circularly polarized wiggler

field.(26 ,27,31) We included all the efficiency enhancement schemes:

i) a spatially varying wiggler amplitude and period (26-2831) and ii) a

D.C. electric field EDC(z) = [ DC/ \z .(32-35) We show

that all the efficiency enhancement schemes are somewhat equivalent.

The complete FEL equations cover all operating regimes.

For a variable period magnetic wiggler field, the FEL equations can

* be appropriately normalized to contain only three parameters. All operating

regimes are covered by the three parameters. The condition for space charge

to be neglected is derived. In the absence of the space charge effects,

the three parameter set of equations is reduced to a two parameter set.

In the high gain regime, we present graphs of growth rate, efficiency

and saturation amplitudes of the radiation field.

In the low gain regime, we obtained the linear gain expression
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with the space charge effect.(27 '37'38) We give an example of a FEL experi-

ment where space charge effect is somewhat important. We compared results

of linear theory with results from non-linear calculations.

II. Normalized FEL Equations with Space Charge Effects

We present a self-consistent non-linear theory of the FEL in the

steady state amplifying configuration, see Fig. (1). Included in our

analysis are space charge effects and the following efficiency enhance-

ment schemes: i) contouring, spatially, the amplitude and/or the wave-

length of the magnetic wiggler field, and ii) by applying an external

D.C. electric field,EDC E 6ODC ^=oz z"

The right handed circularly polarized external magnetic wiggler

field in terms of the vector potential is

A0 (z) = Ao(z)(cos(fko(z' )dz' )1+sin( , (z' )dz' )e) , (1)

f x y

where ko(z) is the spatially varying wiggler wavenumber. The vector and

scalar potential corresponding to the radiation and space charge field are

represented by

A(z,t) = A(z)(cos( k+(z' )dz' - wtyx' -sin (k+(z' )dz' - wtne), (2a)

(z,t) : (z)cos(f(k+(z' )+k°(z))dz'- A)

+ (z)sin( f(k+(z' )+ko(z' ))dz' - t) (2b)

where A(z), (z), p(z) and k+(z) are the spatially slowly varying amplitudes

and wavenumber of the fields. The frequency w of the radiation and space

charge wave is taken to be constant.

Equations governing the spatial evolution of the potentials A(z,t)

and O(z,t) have been derived elsewhere. We begin our analysis with

the fully non-linear, self-consistent equations for A(z), k+(z), e(z) and

2(z):

• . ,2



FEL CONFIGURATION

E.M. AND E.S. FIELDS, A(z,t), +(z,t)

zzo zt

MAGNETIC PUMP
FIELD Ao(z)

INTERACTION REGION

Fig. 1 - Schematic of the Free Electron Laser model. The unmodulated electron
beam enters the interaction region from the left. In this figure the wiggler (pump)
field builds up adiabatically and reaches a constant amplitude and wavelength for
z > 0. The pump field may in general have a varying period and amplitude, which
is not shown in this figure.
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(W2/C2- k2(z))A(z) = F em oVz dto
+ m2C2  O0 IT.p Pz(Z' to)

0

Ao(z)cos O(z,t) + A(z)1 , (3a)

wb Z T/W dta20((z) -(A(z)k+(z)) = - F -- moV p;z +em 2C2 ZOrp z(ZIt 00
lAo~zsin (z,to) I (3b)

(k+(z) + ko(z))4,(z) = - FSC c2 dt oOS(Z, to) (3c)

W 2 VZ 27 /W

(k+(z) + ko(z))4 2(z) - Fsc C2 le T f dt sinp(z, to) (3d)

P(Z, to) f (k+(z') + ko(z') - w/vz(z', to))dz -wt , (4)
0

where wb = (4TIeI2no/mo) , N is the local beam density, F em is the filling

factor for the electromagnetic field, Fsc is the filling factor associated

with the space charge field, vz o is the initial axial beam velocity, vz(Z,to)

is the axial velocity at position z of a particle which was at z = 0 at

time to, pz(z,to) =y (Z,to)moVz(z,to) is the corresponding axial particle

momentum and

¥y(z,t,) = (1 + Iej2(Ao(z) + A(z,T ))2/mjc4+p2(zt)/m 2 c2 (5)
zz

where T(Z,to) = f V(z( to)dZ' + to, is the time it takes a particle to
0

reach the position z if it entered the interaction region z=0 at time to.

The phenomenological filling factors, Fem and Fsc are less than unity and

in general not equal. Roughly speaking, F em is the ratio of the cross

4
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sectional area of the electron beam to the effective area of the radiation

beam. Since the radiation field is not directly supported by the electron

beam, F can be much less than unity. The space charge field, on the
em

other hand, propagates on the electron beam and falls off rapidly away from

the beam. Hence Fsc can be close to unity. For a fixed electron beam radius,

Fem decreases as the radiation, beam radius increases while Fsc approaches

unity as the radius of the cylindrical waveguide containing the electron

beam increases. Physically, the reduced beam plasma frequency Fsc wb is

less than the local plasma frequency wb" The parameter Fsc can also be

referred to as the plasma frequency reduction factor. In the usual case,

where Fem is much less than unity, the space charge wave filling factor is

close to unity, Fsc I, Chapter 8 of Ref. (31).

Note that in Eqs. (3) the electron beam has been assumed to be

initially mono-energetic. Generalization to an initially thermal beam

is straightforward and considered in a previous one-dimensional formulation

of this problem.

The integrands in Eqs. (3) contain the particle dynamics which are

determined from the Lorentz force equations. It is straightforward to

show that the axial particle velocity v (z,to), expressed in terms of the

independent variables z and to, satisfies

d vz(z,to) el2  1 2 2 -Ao(z)A(z)
Z e A (z) 2Lj ~ A~z) cosl (Z,to)

dz .m c3  ' o Y(z,to) Lz z

+Ao(z)A(z)(k+(z) + k0(z) - Vz(z,t o) -)sin 4(~ 1 0  mc)scn ¢,z,to)C C
.M_ . eoC 2 (k+(z) + ko(z))(p 1 (z) sin 4(z,t o)

-4 2(z) cos i(Z'to))] + my jz,t DC (6)

5,3
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where yo = (1 + (IelAo/moc2)2) , yz(Z, to) = (1 - v(z t)/c2)

Y(z,to) = yOyz(Z,to).

From (6) we can derive an equation for the phase p(z, to). We first

define vz(Z, to) = Vzo + 6vz(Z, to), Ak(z) = (k+(z) + ko(z) - w/vzo) and

= wo+Aw where 16vz zowo = (+z ) 1,2 v ko(O) and ]AwJ<<wo. Notingzo z
that WV(z, to) Vz (P(Z,to)/z - Ak(z))/w and k+(z) + ko(z) - vz (Z, to)W/c2

;2ko(O)(l + Ak(z)/ko(O) - (2ko(O))'1 a(z, to)/z) we find that Eq. (6) takes

the form
a
2 (z, to) = aAk(z) _ 21e12  ko (0) d A2 (z)

aza az mj C4 y2 h2(z, to) dz

+ lelyo W/c dODC+ 41e12  k2 (0)
moyo 3h3(z, t) dz mct 7oI(z, t)

1,zAz + 1 sin (z, t0
h2(z, to) Y 0 T(0 5z /

Yo moc 2

h~z,to) T-7-eF (¢1(z) sin (z, t0  0 2 (Z) cos z, to)) , (7)

wher alp (Z'to) Ak z -
h(zto) = yz(Z' to)/Y k() + ko0

In obtaining (7) we have made the added assumptions that A(z) changes little

over a wiggler period. The various efficiency enhancement schemes ((1) con-

touring the wiggler period, (2) contouring the wiggler amplitude and, (3)

application of a D.C. electric potential) are represented by

thE. first three terms of Eq. (7) respectively. The affect of the various

schemes on the phase are equivalent.
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In the following, we will consider a simplified example

where the D.C. electric field is zero, EDC = dzDC = 0, the am-

plitude of the magnetic wiggler A is constant, and k (z) =
0 0

k0 (O)(1 + E(z)). We will show that the FEL equations can be

normalized in such a way as to be functions of only three

parameters, and to be functions of only two parameters in the

absence of space charge-effects. For y0 >>l, the complete set

of coupled equations in (3) and (7) can be written as

1 0ip~i, ) 2) + C)a(z) 4 h-2 I ) + 1 4(2_ j'o_ .

22 d! h2(2, ) 2 silUoJ

+2 rDo <Cs - -RJ )>sin (2, i )  -<sin ( , )>cos ( , (8a)

(6k(l) - E(2)) a(2) = - 27r <h-'(1, to) cos ' (2, io)>, (8b)

da(2) = - 2r<h- (2, 1.)sin P (2, 1.)> • (8c)

where z = ko(O)z is the normalized axial distance, to=Lt., 6k(z)

Ak( )/k 0 (O) + Aw/w 0 , a, k(2) = (k () + k( ) -w/v,), LL = 0,+.,

WO = (l+ zo 2 v k ) I(O),lL < < ' ,h( ' F ) - (Zt )f

(1+ Lk (F) /k G (0) -a { (2, F)/ s) < ( ...)> . 2 v
(lzMz~K0 UJ~(~tJ/z) .<(...)> = (dt 0 /2) (.. .)

is the ensemble average operator a(2) = 8Ti(yz0/Q)2A(2)/A 0 'is

the normalized radiation field, =Nff'm ub/( i7'ck (0)) ise 0
the beam strength parameter, C2 (lelA §/y m c2 2  =

0 0

2t2/2n, D2 = (F /F )t2/ny2 is the space charge parameter,91 2 0, = (sc em2 z o

c~oj = feJA,/Yomoc is the transverse particle velocity due to

7
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the magnetic pump field.

In obtaining Eq. (5) from (3) and (4) we made use of the
2 2,2

approximations I(A/2k+) k+/3z I << 6A/bz, (12-c k+(z)- 2w

( -ck+(z)), Vz(Z,t) v ( (Zto)/z - Lk(z))/u and

where appropriate (k+(z) + k (z)) - wlc

The space charge potential is given by

2 <cosIp (2,= i lc2 :i :n D 2 1~ I 9

01,2 =  7 r YZO (<sin (2, to)>(9)

where Y.Lo = yO/yzo= (I + lel 2A/ omc') .

The coupled set of normalized equations in (8) completely describe

both the linear and non-linear behavior of the FEL process for a varying

period magnetic pump field. These equations include the effects of space

charge in both the low gain limit (interference regime) as well as the

high gain limit for arbitrary magnetic pump amplitudes. Space charge

effect is manifested in the last term of the modified pendulum equation,

i.e., Eq. (8a). The general initial conditions needed to solve the FEL

equations in (8) are simply 6k(O) = 0, E(O) = 0, h(O,t O) 
= 1'P(Ot o)

..t.and .t0) = - Aw/w, where Aw =w -w, is the frequency

mismatch and wo = (1 + Bzo )Yzvk (0).

For completeness, the linear dispersion relation(24 -26) can also be

written in terms of the normalized variables.

6Sk(,k - )(6k -;2) =-2Tr'(l + k) (10)

where

?! L. + TrD +WO T DO

8
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Im (6k) is the normalized growth rate and Le = (ko(O) Im (6k)) "' is the

e-folding length of the radiation.

Efficiency is defined as

n - O<Y21) 1a

For F em= F sc= 1 and Y. >> 1,

C 
2

S( I + w ) ( 2() _ a2(O)) (1b)

In the absence of space charge effects we have a two parameter set

of equations for both the low gain and high gain limits. In the low gain

limit the two input parameters are C2 a(O) and Aw/w o while in the high

gain limit the two parameters are C2 and Aw/w o. All operating regimes

of the FEL are therefore completely covered by two parameters when space

charge effects can be neglected. The inclusion of space charge effects

introduces a third parameter D2. The importance of the normalized

equations to only two parameters is that the two parameters can be used

to identify all the equivalent FEL experiments. The normalized equations

provide a better understanding of the trade off among all the FEL design

variables.
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III. Low Gain Regime with Space Charge Effects

We will now consider the low gain or interference regime without

applying any efficiency enhancement schemes. We may expect that the

single pass efficiency will be small which implies that we may set h (2,t0)

Y 'z (1, i /- equal to unity without loss of accuracy. The fact that

h(2, ij)-1 further implies that both LAk(!)/k,(0fl and ip2,t0 /2ij are

much less than unity. With these assumptions the non-linear FEL equations

in (8) become

~2~2, 0) 1d1(2) + C2 a(0) sin p(2,
~~d2

+ 2ff D20kcosip(2, to)>sinp (l2, to) - <sin *p(2, to)> cosp (2, to)) , (12a)

Ak()a(2) =-21T<cos p(2, to)> ,(12b)

-2Tr<siniP(2, t)>. (12c)

Since we are considering the low gain regime, a(z) is replaced by a(0)

on the right hand side of (8a).

We seek for solutions where space charge effect is moderately

important. To solve for the linear dynamics we expand q)(1, io by setting

i(,i ) M62, to) + q,( 1)(2, to) + tP 2) (2, to), where w,( )> ii)> qj(2).
The equations we will solve are

a 2p O(o o) 0(13a)

_________ =C2 a(0)sin 0(~o) (2, t)(13b)

24)() Q (i) dk()(3

+ 2nD02 (<Cos (0 + ( )>sin (2, lo) -<sin('P + ~ 'p)>Cos iP(O(J)

01

10.



The solutions are

( t) = 2 o0  + iz (14a)

(), ) .C a(O)(sin(to+ii2) - sin i P2 cos i) (14b)

(2 C 2

(2, i) (2 sin P2 - p cos Pi - z) (14c)

-C D a(O) t0  ipOz + 2 si 3 o

-T D; s() in(to+ 112) - sin to- 4cOSto+ P22sin io+ 02'Cos to

-si S2~ 6 cs 0,

where i=-Aw/wo

Substituting (14) into (12c) and integrating over i we find that

the gain G with space charge effects is given by

G(ee ( C 4Do S(e,p (15)

where

+ 11 sin

s(Oe) p 2 1 p Do~ p 0O3 j [

e = Pj/2 and e= rr Doi/2 :- VFsc/Fem &2/2yzo is the contribution due to

space charge effects. For e e, we can rewrite (15) as

S =eo sine+e ) 2 [ Oi-r)I (16

s ) 
[ 

+ p: 
J "S~e~e p(16)

When space charge ef'fects are negligible, the maximum gain occurs

at e= 1.3 where a (sinoe/O/De = 0.54 and is

Gmax(z) = (ko(O)z)3<< (17)

We can estimate the level of electromagnetic field needed to achieve

saturation in an interaction length L. Electron trapping and thus satura-

tion occurs when the phase shift of the particles with respect to the wave

is approximately 7. Loosely speaking, saturation occurs whenj (1)(2,)l

iT, using (12b) we find that this condition gives a(O)s 27/(C2k2L 2) or

11

S .
. .. #d 4.' 1 -/.,



A(O)-- O (18)

O. Z 0'

This value of the radiation field, necessary to achieve saturation

at z = L is to within a numerical factor of order unity, the same as that

obtained in Ref. (24) using a different line of reasoning.

The gain expression with space charge effect is valid when 1>>82
p

in order that the assumption i()>>I is satisfied. Therefore, the

gain expression is applicable when the space charge effect is only moderately

important. The condition for space charge to be important is

e2 F sc (k )z >> 1 (19)p F e \ Y 0 J

where = e / (Wyv ck0(O)). For F F 1, this condition isem 0 sc em
identical to that derived in Refs. (37) and (38). Condition (19) is

dependent on the length of the interaction region L. Space charge effect

becomes important when L (2yz/ ko (0)) (Fem/Fsc )2

The more appropriate condition for neglecting space charge

effect is

2'rr < 1 (20)
C~a(O) <

The physical interpretation of Eq. (20) is that space charge effects

become important when the ideal maximum amplitude of the space charge

potential becomes much larger than the initial amplitude of the

ponderomotive potential. This condition, rewritten in terms of the

electron density is

no (ky2 A 0A) (2Rymc Fs) (21)

12
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The condition for neglecting space charge effects Eq.

(20) is not directly related to the length of the interaction region,

but dependent on the amplitude of the vector potential of the radiation.

For the low gain case, using Eq. (18) as the approximate initial

amplitude of the radiation vector potential for obtaining saturation

at length L, Eq. (20) reduces to Eq. (19) to within a numerical factor

of order unity.

The linear gain expression should always be used with discretion.

The linear gain expression is valid before saturation effects becomes

important. When the frequency mismatch is small,

0. - < 7o_ A p (22)
Wo Y

trap

some particles can be initially trapped in the ponderomotive well. The

full width of the trapping potential is given by

Yo eItrap = 2 C02a(0) (23)

trap

When particles are initially trapped, saturation effects become

important roughly within a distance of half of a bounce wavelength.

A bounce wavelength, Lb, is the distance the trapped electrons

travel in the axial direction while executing a bounce period in the

ponderomotive potential well. Considering only nearly resonant particles

in Eq. (8a), we find

L1 b =C0 2a(o)l . (23)

If the frequency mismatch satisfy the inequality Eq. (22), the linear

gain expression is valid for z/27<< Lb/to.

13
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For the low gain regime, the independent non-dimensional

parameters are C0
2 a(O), Aw/w and Do2 . The appropriate dependent

variables are a(O)G and n. In the low gain regime, the efficiency is

approximately

Tj (1a ( 0 )) (a (0) G ).(24)

IV. Numerical Results

We will apply our t,o-ory to illustrate a few concepts on space

charge effects and filling factors using a practical example

in the low gain regime. We will also present some widely applicable

graphs for growth rate and efficiency in the high gain regime.

a) Low Gain Example

The FEL experiment we have chosen consists of a magnetic wiggler

with a wavelength ko= 1 cm (k,= 2r cm-1), amplitude Bo= 325 gauss

(Ao = 51.7 stat volts), an interaction length L = 3 m, an

electron beam with energy of 3 Mev (y,= 7) and current density of

16A/cm2 (no= 3.3 x 10'em - , Wb= 3.3 x 10- 9sec-1). The radiation is at

102 m(' ). Taking filling factors to be unity, we obtain = 6.5 x 10-3 and

ao = 4.33 x 10 3 . For the initial example, A(O) is chosen to achieve

saturation at z=L as predicted by linear theory (2 ). For the parameters

here, A(O) = AL = 3.5 x 10-stat volts. The normalized parameters are

C0
2 a(O) = 2.5 x 10 - and Do2 = 2.85 x 10- .

Figure 2 consists of plots of linear gain with space charge

effects (solid curve), 2= 0.76, and linear gain without space charge

effects, (dashed curve), 2 = 0, as a function of the frequency mismatch
p

A/W/ at 1/2r = 300 (z = 3m). We see that space charge effects reduce the

linear gain by about 20% at the maximum. The dotted curve is the gain

14
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0.4
L=3m

0.3-

z < 0.2- /.
QS

0.1- •
00

FREQUENCY MISMATCH &0j (10-31

Fig. 2 - Plots of gain as a function of frequency mismatch, Aw /w o at 3m. The
solid curve is linear gain with space charge effects, Op2 = 0.76. The dashed curve
is linear gain without space charge effects, 0 2 =f 0, and the dotted curve is the
gpin at 3m calculated from the non-linear self-Consistent equations (8a-d).

at 3m calculated from the non-linear equations (8a-d), and the peak

value of the gain has shifted to a larger frequency mismatch.

If the frequency match is small relative to the trapping potential,
" as in Fil. (20), saturation effects become important when the electrons travel

roughly half of a bounce length. A bounce wavelength Lb is the distance

electrons travel in the axial direction while executing a bounce period

in the ponderomotive well. For this example, 6 xtrap and

L b /2 = 3. 1m. Therefore, linear theory is not applicable at 311. Plots

of linear gain with space charge effects (solid curve), linear gain with-

out space charge effects (dashed curve), and gain from non-linear self-

consistent calculation (dotted curve) as a function of axial distance

15
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-3

for Aw/w 0 = -1.5 X 0 are shown in Fig. 3 . This value of

frequency mismatch gives the maximum linear gain at 2/2n = 300 (z=3m)

see Fig. 2 . The linear regime of the non-linear self-consistent

formulation is z<2m for this example. Finally, we will show that, in

the linear regime of the non-linear calculation, the gain from the non-

linear calculation is in good agreement with the linear gain expression

as shown in Fig. 4 calculated at 2/27 = 150 (z = 1.5m).

To summarize, the disagreement between linear gain and gain from

non-linear calculation at z = 3m is that the initial guess of C0 a(O) =

2.5 x 10-  (A(O) = AL) was slightly too large. Saturation effects have

become important at the end of the interaction region. As C a(O) or

A(O) decreases, the gain from non-linear calculation will converge to

the linear gain expression as shown in Fig. 5 . Figure 5 contains

curves of the gain from the non-linear formulation (solid curves) for various

values of C0 a(O), linear gain with space charge effects (dashed curve),

and the gain from non-linear calculation without the space charge potential

and C0
2 a(O) = 1.25 x 10- 6 (A(O) = AL)(circles) as a function of frequency

mismatch at 2/27r = 300 (z = 3m). In the linear regime of the non-linear

calculation, the space charge potential decreases the gain, agreeing

with the linear theory. Figure 6 are plots of efficiency versus frequency

mismatch at 2/2n = 300 (z = 3m) for the same range of CO a(O).

The effect of space charge on gain for the same FEL example will

be summarized below. According to linear theory , the space charge effect

is only moderately important for ep2= 0.76. We found that the effects of
p

space charge are dependent on the radiation vector potential at input,

A(O). Taking A() = AL. we obtain C02a(O) = 2.5 x 10" and 21TDO = 0.67.

The results of self-consistent non-linear calculations found the space

16
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0.8 I I I

= -1.5 x 10 - 3

COO
0 /

0.6

//
/

/
z/

c 0.4

/

0.2
_J, S

00
0 1 2 3 4

AXIAL DISTANCE z (meters)
Fig. 3 - Plots of gain as a function of axial position at the frequency mismatch,
AW/W o =-1.5 X 10- 3 , which gives the largest value of linear gain. The solid curve
is linear gain with space charge effects, 0p2 = 0.76. The dashed curve is linear
gin without space charge effects, 0 2 = 0, and the dotted curve is the gain from
the non-linear self-consistent equations (8a-d). Saturation effects are important
at 3m.

.
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i/27r =300

2
Op=0.76

Do =-2.85 x10-7 0 -C 0
2a(0) 6.25x 10-7

0.3-0

C C0
2a() 1.25x 10-6

2

c 0 2a(0) = 2.5x 10-6

z

0.1 C0 
2a(0) =5.0x 10-6

0 12 3 4 5

2W (10-3)
(.O0

Fig. 5 - Plots of gain as a function of frequency mismatch at z/2v = 300 (z=3m).
The solid curve is gain from non-linear self-consistent formulation for various val-
ues of C0 

2a(0). The dashed curve is linear gain with space charge effects, and cir-
cles (o) are gain from non-linear self-consistent calculation without space charge
effects With C 2a(0) =1.25 X 10-6.
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1/27T = 300 C 02a(0) =5.0 x10-6

Do2 2.85 x10-7

1.5

~1.0-

z

L

C0 a(O) =1.25x10

0.5-

0
0 1 2 3 4 5

Fig. 6 - Plots of efficiency versus frequency mismatch at z /2w =300 (z=3m)
for various values of C0 

2aO

0 a(I-
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charge effects to be negligible. Space charge effects become increasingly

more important as we decrease C0
2a(0) or A(O). In Fig. 5 , we see that

the gain in the linear regime of the non-linear calculation without the

space charge effects (circles (o) is about 10% larger for Ca(O) = 1.25x10
- 6

(A() =1/2 AL) and 27TDo2 = 1.3. Figure 7 contains curves of the spatial
L) C0 

2a(O)

evolution of the amplitude of the space charge potential (dashed curve) and

the amplitude of the ponderomotive potential (solid curve) for Aw/wo=

-2.0 x 10 3 Co 2a(O) = 1.25 x 10-'(A(0) = 1/2 AL) and D02= 2.85 x 10- 7

Notice that at 3m, the space charqe potential is about 2/3 of the ponderomotive

potential. Thus we expect the space charge potential to have a moderate

effect on the gain.

Figure 8 contains plots of gain with space charge effects (solid

curve) and gain without space charge effects (dashed curve) as a function

of axial distance for L- =-2.0 x I0- Co2a(O) = 1.25 x 10-(A(O) = 1/2 AL)wo

and D0
2 = 2.85 x 10- 7. As noted in Fig. 5, the space charge effects decrease

the gain in the linear regime of the self-consistent calculation. The

collective effects of the space charge field, however, increase the gain

in the non-linear regime.

Let us now turn our attention toward the effects of filling

factors. When the electromagnetic filling factor Fem is no longer

equal to unity, the appropriate parameter for comparison purposes is

efficiency as expressed by Eq. (Ila). Plots of efficiency versus

axial distance for various combination of filling factors are shown in

Fig. 9 for - = -2.0 x 10- 3
, C0 2a(O) = 1.25 x 10-6 and Do

2/Fsc= 2.85x10 " .

In the linear regime, 2/2 <300 the efficiencies calculated with different

filling factors are approximately the same. In the non-linear regime

2/27T> 300, efficiency became smaller as Fem decreases.
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POTENTIAL

_j 1.0-

z

0 . \,,-SPACE CHARGEa-\ POTENTIAL
0/

0 0.5-/

a.\ (

00 2 4 6 8

AXIAL DISTANCE i127'r (102)
Fig. 7 - Plots of the amplitude of the space charge potential (dashed curve) and the
amplitude of the ponderomotive potential (solid curve) as a function of axial position
for Awfc2 = 2.0 X 10-3, C 02a(0) 1.25 X 10-6 (A(0) 112 AL) and D0

2 
=2.85

X 10-7
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~L 2.0X 10-3

1.0- C 0 
2a(0) =1.25x10-6

Do 2.85x 10-7

S WITH SPACE
CHARGE EFFECTS

-

10.5-/
z/

/ WITHOUT SPACE
// CHARGE EFFORTS

0/

0 2 4 6 8

AXIAL DISTANCE -i/27r (102)
Fig. 8 - Plots of gain with space charge effects (solid curve) and gain without space
charge effects (dashed curve) as a function of axial distance for Awk.iw 0 2.0 X
10-3, C 0 2a(O) =1.25 X 10-6 (A(0) =1/2 AL) and D0

2 2.85 X 10-7
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Fig. 9 - Plots of efficiency versus axial distance for various combination of filling factors

'it .' Aw -2.0 X 10-3 C 2a(0) =1.25 X 10-6, and Do 2f/Fw 2.85 X 10-7
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In the low gain regime the non-dimensional value a(O)G at any

axial position 2 is only a function of the independent parameters

C0
2 a(O), D 2and Aw/wo. A set of three curves of a(O)G at saturation for

00different non-dimensional values of Co0 2a(O) is shown as a function of

frequency mismatch, Aw/wo, in Fig. 10 for D0 = 2.85 x 10 .

b) High Gain Regime

For the high gain regime, we illustrate examples where collective

effects are negligible. Figure 11 is a plot of growth rate in the linear

regime of the non-linear self-consistent formulation as a function of

frequency mismatch with 5 x 10 and various values of Co2. The

results are in good agreement with the normalized linear growth rate

obtained from linear dispersion relation, Eq. (10). The saturation ampli-

tude and efficiency as a function of frequency mismatch are plotted in

Figures 12 and 13. We notice that the magnitude of efficiency as well

as the bandwidth increases as C0
2 increases.
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10

C2 a(0 ) 1.25 x10- 6

z
0

., C2 a(0) -2.5 x10-6

z

x 'C 2 a(0) 5x10 -6

2

0
0 2 4 6

W0

Fig. 10 - Plots of a(0)G at the saturation in the low gain regime of the non-linear
self-consistent calculations, when space charge effect is moderately important, Do2

f 2.85 X 10-7, as a function of the non-dimensional parameters C, 2a(0) and Aw1w
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I 1.0 -

C2 5x10-7
00
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0'IIIV-2 -1 0 1 2 3 4

CO CO O ( 1 0 -2 )
Fig. 11 - Plots of linear growth rate in the high gain regime, where collective effects are

negligible, D. 2 5 X 10-7 as a function of frequency mismatch Acw4w and C0
2
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Fig. 12 - Plots of efficiency in the high gain regime as a function of fr-equency mismatch
'.'/o and C, 2 for a case when the collective effect is negligible, D0

2 
-5 X 10-7
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Fig. 13 - Plots of saturation amplitude of the radiation vector potential in the high
gain regime as a function of frequency mismatch Aww and C, 2 when the collec-
tive effect is negligible, Do 2 

-5 X 10-7
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